Size dependent arsenic volatilization in ErAs nanoparticle powders
نویسندگان
چکیده
منابع مشابه
Nanoparticle-mediated cellular response is size-dependent.
Nanostructures of different sizes, shapes and material properties have many applications in biomedical imaging, clinical diagnostics and therapeutics. In spite of what has been achieved so far, a complete understanding of how cells interact with nanostructures of well-defined sizes, at the molecular level, remains poorly understood. Here we show that gold and silver nanoparticles coated with an...
متن کاملSpacing-dependent dipolar interactions in dendronized magnetic iron oxide nanoparticle 2D arrays and powders.
Self-assembly of nanoparticles (NPs) into tailored structures is a promising strategy for the production and design of materials with new functions. In this work, 2D arrays of iron oxide NPs with interparticle distances tuned by grafting fatty acids and dendritic molecules at the NPs surface have been obtained over large areas with high density using the Langmuir-Blodgett technique. The anchori...
متن کاملBiotransformation and volatilization of arsenic by three photosynthetic cyanobacteria.
Arsenic (As) is a pervasive and ubiquitous environmental toxin that has created worldwide human health problems. However, there are few studies about how organisms detoxify As. Cyanobacteria are capable of both photolithotrophic growth in the light and heterotrophic growth in the dark and are ubiquitous in soils, aquatic systems, and wetlands. In this study, we investigated As biotransformation...
متن کاملSize-dependent optical properties of VO2 nanoparticle arrays.
The size effects on the optical properties of vanadium dioxide nanoparticles in ordered arrays have been studied. Contrary to previous VO2 studies, we observe that the optical contrast between the semiconducting and metallic phases is dramatically enhanced in the visible region, presenting size-dependent optical resonances and size-dependent transition temperatures. The collective optical respo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2018
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.5048191